
‭CISC 1115 (TY8) Exam 1 Review Sheet‬

‭NOTE‬‭: This review sheet covers most (but not all)‬‭topics for your upcoming exam. It is here to clear up‬
‭any confusion you may have about a particular concept, however, please keep in mind that we cannot‬
‭and will not provide you with all the answers. Programming is a hands-on skill, please take it upon‬
‭yourself to understand these concepts AND put them to use practically. Please work on the sample‬
‭exercises provided; the only way to get better at writing code is by‬‭actually writing code‬‭.‬

‭Topics‬
‭●‬ ‭Chapter 2: Variables and operators‬
‭●‬ ‭Chapter 3: Input and output‬
‭●‬ ‭Chapter 5: Conditionals and Logic‬
‭●‬ ‭Chapter 7: Loops‬

‭Chapter 2: Variables and Operators‬

‭Identifiers and Keywords‬

‭●‬ ‭Keywords are predefined, reserved words used in Java programming with special meanings to‬
‭the compiler.‬

‭○‬ ‭For example: int, char, double, new, return, static, etc.‬

‭●‬ ‭You cannot use keywords like int, for, class, etc. as variable names (or identifiers) as they are part‬
‭of the Java programming language syntax.‬

‭●‬ ‭Identifiers are the names given to variables, classes, methods, etc.‬

‭○‬ ‭For example: n, num, number, score, etc.‬

‭Arithmetic Expressions‬

‭●‬ ‭Pre-increment (++x), i.e. System.out.println(++x);‬‭➡➡➡‬‭result: new value of x‬
‭●‬ ‭Post-increment (x++), i.e. System.out.println(x++);‬ ‭➡➡➡‬‭result: original value of x, store new‬

‭value for next action‬
‭●‬ ‭(=): assignment vs (==): equivalence‬

‭Arithmetic Precedence‬

‭Java.lang.Math class methods‬

‭●‬ ‭Math Class methods are built-in methods that make performing numeric operations like square,‬
‭square root, cube, cube root, exponential and trigonometric operations, etc. easier.‬

‭●‬ ‭Math class methods include (but are not limited to):‬

‭○‬ ‭abs()‬‭: java.lang.Math.abs(datatype arg) method returns‬‭the absolute value of any type of‬
‭argument passed. This method can handle all the data types‬

‭■‬ ‭Parameters:‬
‭arg: the argument whose absolute value we need‬

‭■‬ ‭Returns:‬
‭the absolute value of the passed argument‬

‭○‬ ‭pow()‬‭: java.lang.Math.pow(double b, double e) method‬‭returns the value as b^e‬
‭■‬ ‭Parameters:‬

‭b: base‬
‭e: exponent‬

‭■‬ ‭Returns:‬
‭value as base^exponent‬

‭○‬ ‭sqrt()‬‭: java.lang.Math.sqrt(double a) method returns‬‭the correctly rounded positive‬
‭square root of a double value‬

‭■‬ ‭Parameters‬‭:‬
‭a - a value‬

‭■‬ ‭Returns:‬
‭the positive square root of a. If the argument is NaN or less than zero,‬

‭the result is NaN‬

‭○‬ ‭random()‬‭: java.lang.Math.random() method returns a‬‭pseudorandom double type‬
‭number greater than or equal to 0.0 and less than 1.0‬

‭■‬ ‭Returns:‬
‭a double value with a positive sign, greater than or equal to 0.0 and less‬

‭than 1.0.‬

‭■‬ ‭To generate a double value within a specific in range:‬

‭Math.random() * (max - min) + min‬

‭Where min is inclusive and max is exclusive‬
‭(i.e. to generate a number between 1-10, set min to 1 and max to 11)‬

‭○‬ ‭See the Java API for the full list of Math class methods:‬
‭https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Math.html‬

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Math.html

‭Chapter 3: Input and Output‬

‭Writing to the Screen (System.out)‬

‭●‬ ‭System.out represents the Standard Output Stream. That means that if we want to print any‬
‭statement on the console, we should use the following statement:‬

‭System.out.print();‬

‭●‬ ‭There are three methods we use to print statements:‬

‭○‬ ‭print(String s)‬‭: used to print on the console. It‬‭accepts a string as a parameter (we can‬
‭concatenate parts to the string if necessary, i.e. “Hello” + “ World”, etc. however, it is‬
‭typical convention to include all string literals in the same pair of quotations if they are‬
‭consecutive) After printing the statement, the cursor remains on the same line.‬

‭○‬ ‭println(String s)‬‭: upgraded version of the print()‬‭method. It is also used to display text on‬
‭the console. After printing the statement, it throws the cursor at the start of the next line. It‬
‭is the main() difference between the println() and the print() method.‬

‭○‬ ‭printf(String format, datatype args)‬‭: It accepts two‬‭parameters:‬

‭■‬ ‭format: It is a formatted String, uses placeholders with specific conversion‬
‭characters to refer to the arguments that will be replaced when printing‬

‭■‬ ‭args: It is an argument referenced by the format specifiers. If the number of‬
‭arguments is more than the format specifiers, the other arguments are ignored.‬
‭The number of arguments may be zero.‬

‭■‬ ‭Conversion characters are only valid for certain data types. Here are some‬
‭common ones:‬

‭●‬ ‭%s formats strings (String)‬
‭●‬ ‭%d formats decimal integers (int)‬
‭●‬ ‭%f formats floating-point numbers (double)‬

‭■‬ ‭Optional Modifiers:‬

‭●‬ ‭The [flags] define standard ways to modify the output and are most‬
‭common for formatting integers and floating-point numbers.‬

‭●‬ ‭The [width] specifies the field width for outputting the argument. It‬
‭represents the minimum number of characters written to the output.‬

‭●‬ ‭The [.precision] specifies the number of digits of precision when‬
‭outputting floating-point values. Additionally, we can use it to‬
‭define the length of a substring to extract from a String.‬

‭■‬ ‭%[flags][width][.precision]conversion-character (i.e. %2.2f would print a double‬
‭value with two decimal places with left padding of two spaces)‬

‭■‬ ‭printf() throws‬‭NullPointerException‬‭if the format is null, also throws the‬
‭IllegalFormatException‬‭if a format string contains illegal syntax, and throws an‬
‭IllegalFormatConversionException‬‭if the placeholder‬‭and corresponding‬
‭argument are not of the same type.‬

‭Read Interactively from the Keyboard (System.in)‬

‭●‬ ‭All reading done in Java uses the Scanner class. Using this class, we can create an object to‬
‭read input from the standard input channel System.in (the keyboard)‬

‭●‬ ‭To use the Scanner class, it is necessary to import the class Scanner from the library java.util by‬
‭including the following line at the top of program:‬

‭import java.util.Scanner;‬

‭●‬ ‭We can declare a Scanner object by saying:‬

‭Scanner sc = new Scanner (System.in);‬

‭○‬ ‭where:‬

‭■‬ ‭sc is the name of the Scanner object (this can be changed and is entirely up to‬
‭the person who writes the code)‬

‭■‬ ‭and System.in connects our object to standard input (the keyboard)‬

‭●‬ ‭The Scanner class has multiple built-in methods that we can access to help us read data, for‬
‭example:‬‭we can use sc.nextLine() to read in a line‬‭of String(s) (spaces included)‬

‭●‬ ‭Other methods include:‬

‭○‬ ‭nextBoolean(): reads a boolean value from the user‬
‭○‬ ‭nextByte(): reads a byte value from the user‬
‭○‬ ‭nextDouble(): reads a double value from the user‬
‭○‬ ‭nextFloat(): reads a float value from the user‬
‭○‬ ‭nextInt(): reads a int value from the user‬
‭○‬ ‭next(): reads a complete token (String) from the user. A complete token is‬

‭preceded and followed by input that matches the delimiter pattern, in most‬
‭instances this is a space‬

‭●‬ ‭Sample exercises:‬

‭1.‬ ‭Write a Java program that prompts the user for their first and last name and then‬
‭prints out a message: “Hello, [FIRST NAME, LAST NAME]!”‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter your name: Jane Doe‬
‭Hello, Jane Doe!‬

‭Reading and Writing Using Files‬

‭●‬ ‭As previously mentioned, we use a Scanner to read data whether or not the data is from the‬
‭keyboard or a file.‬‭To read from a file we only need‬‭to make one or two modifications from‬
‭what we learned from reading from the keyboard.‬

‭●‬ ‭First, since we are using files we need to allow our program(s) to use them by including:‬

‭import java.io.File;‬ ‭//import the File class‬

‭●‬ ‭Now we can add a‬‭throws Exception‬‭declaration to main‬‭and create the File object that we will‬
‭be reading from:‬

‭File file= new File("[filename].txt");‬
‭●‬ ‭And create a Scanner like we have previously done, only changing our reference from the‬

‭keyboard to the corresponding file object:‬

‭Scanner sc = new Scanner(file);‬

‭●‬ ‭It is important that you remember to‬‭create the .txt‬‭file that you are trying to reading from and‬
‭make sure that it is in the correct directory or to specify the path where the file is located‬
‭when creating the File object‬‭else you will receive‬‭a FileNotFoundException when you attempt‬
‭to run your code.‬

‭●‬ ‭Writing to a file is slightly less work since we do not have to manually create the .txt file ourselves‬
‭prior to running the program, the program will do the creation for us.‬

‭●‬ ‭Like before, we need to import the PrintWriter class in order to use it:‬

‭import java.io.PrintWriter;‬

‭●‬ ‭We will use the PrintWriter class to create our file:‬

‭PrintWriter pw = new PrintWriter(“[filename].txt”);‬

‭●‬ ‭It is important to‬‭make sure that the filename that‬‭you are trying to create does not already‬
‭exist in the directory that you are trying to create it in otherwise, you will overwrite the file‬
‭and lose your original file data‬

‭●‬ ‭Now we can use the PrintWriter object to write, the same way that we wrote to the screen only‬
‭replacing System.out with our PrintWriter object,‬‭i.e. pw.print(), pw.println(), pw.printf()‬

‭●‬ ‭Try modifying the programs that you may have previously done so that they write to both‬
‭the screen AND to a file‬

‭Chapter 5: Conditionals and Logic‬

‭If and if-else statements‬

‭●‬ ‭An if statement specifies a statement(s) to be executed only if a particular boolean expression is‬
‭true.‬

‭●‬ ‭An if statement can be followed by an optional else statement, which executes when the boolean‬
‭expression is false.‬

‭●‬ ‭An if statement can be followed by an else if statement to specify a new condition if the first‬
‭condition is false. If you choose to include an else if statement it‬‭MUST COME BEFORE‬‭the else‬
‭statement‬

‭●‬ ‭Syntax:‬

‭○‬ ‭if(condition1) {‬
‭//statement(s) to be executed if condition1 is true‬

‭}‬
‭else if(condition2) {‬

‭//statement(s) to be executed if the condition1 is false and condition2 is‬
‭true‬

‭}‬
‭else {‬

‭//statement(s) to be executed if the condition1 is false and condition2 is‬
‭false‬

‭}‬

‭●‬ ‭Sample exercises:‬

‭1.‬ ‭Write a Java program that prompts the user for a number and prints whether it is‬
‭even or odd.‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter number: 104‬

‭104 is an even number.‬

‭2.‬ ‭Write a Java program that prompts the user for three numbers and prints out the‬
‭largest of the three.‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter three numbers: 78 25 87‬

‭The largest number is: 87‬

‭Nested if-else statements‬

‭●‬ ‭Nested if statements means an if statement inside an if statement‬

‭●‬ ‭Syntax:‬

‭○‬ ‭if (condition1) {‬
‭//statement(s) to be executed if condition1 is‬‭true‬
‭if (condition2) {‬

‭//statement(s) to be executed if condition2 is‬‭true‬
‭}‬

‭}‬

‭●‬ ‭Sample exercises:‬

‭1.‬ ‭Write a Java program that prompts the user for a year and prints whether that year‬
‭is a leap year or not. (‬‭Note: Leap Years are any year‬‭that can be evenly divided by‬
‭4. A year that is evenly divisible by 100 is a leap year only if it is also evenly‬
‭divisible by 400. For example, the years 1700, 1800, and 1900 are not leap years,‬
‭but the years 1600 and 2000 are.)‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter year: 2016‬

‭2016 is a leap year.‬

‭Logical and Relational Operators‬

‭●‬ ‭Boolean expressions (evaluates to true/false):‬
‭○‬ ‭Less than:‬‭a < b‬
‭○‬ ‭Less than or equal to:‬‭a <= b‬
‭○‬ ‭Greater than:‬‭a > b‬
‭○‬ ‭Greater than or equal to:‬‭a >= b‬
‭○‬ ‭Equal to:‬‭a == b‬
‭○‬ ‭Not Equal to:‬‭a != b‬

‭Integer and Logical Values‬

‭●‬ ‭We can include integers in our boolean expressions and determine whether or not they are true‬
‭or false. For instance, if we were to print out:‬

‭○‬ ‭System.out.print(6 > 5) we would see a result value of ‘true’‬
‭○‬ ‭while System.out.print(6 < 5) or System.out.print(6 == 5) would result in a value of ‘false’‬

‭for obvious reasons‬

‭Chapter 7: Loops‬

‭While Loops‬

‭●‬ ‭allows code to be executed repeatedly based on a given Boolean condition (T/F). Needs two‬
‭parts:‬‭condition/test expression and increment/decrement/update‬‭expression‬

‭●‬ ‭Syntax:‬

‭○‬ ‭int i = 1;‬
‭while(i <= 10) {‬

‭//statement(s) to be executed while the condition‬‭is true‬
‭i++;‬

‭}‬

‭○‬ ‭where:‬

‭■‬ ‭i <= 10 is a boolean expression. I‬‭f the condition‬‭evaluates to true, we will‬
‭execute the body of the loop and go to the update expression.‬‭Otherwise,‬
‭we will exit from the while loop without reaching the statements inside the body.‬

‭■‬ ‭and i++ increments the variable i‬

‭●‬ ‭How many times does this loop run? What would happen if you forgot to include i++;? Try writing‬
‭code that uses a while loop like this.‬

‭●‬ ‭Sample exercises:‬

‭1.‬ ‭Write a Java program that prompts the user for age and prints out “Sorry, you are‬
‭ineligible to vote.” and increments the age until the user is eligible to vote, and‬
‭prints out “Congratulations, you are eligible to vote!” once they are 18+.‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter your age: 16‬
‭.‬

‭Sorry, you are ineligible to vote.‬
‭Sorry, you are ineligible to vote.‬
‭Congratulations, you are eligible to vote!‬

‭2.‬ ‭Write a Java program that prompts the user to input an integer and then outputs‬
‭the number with the digits reversed. For example, if the input is 12345, the output‬
‭should be 54321.‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter a number: 12345‬
‭Reverse of 12345 is: 54321‬

‭For Loops‬

‭●‬ ‭Unlike a while loop, a for statement has the‬‭initialization,‬‭condition, and increment/decrement‬
‭in one line‬

‭●‬ ‭Syntax:‬

‭○‬ ‭for (int i = 1; i <= 10; i++) {‬
‭//statement(s) to be executed while the condition is true‬

‭}‬

‭○‬ ‭where:‬
‭■‬ ‭int i = 1; is the initialization‬
‭■‬ ‭i <= 10; is a boolean condition‬
‭■‬ ‭and i++ increments the variable i‬

‭●‬ ‭How many times does this loop run? Try writing code that uses a for loop like this.‬

‭●‬ ‭Sample exercises:‬

‭1.‬ ‭Write a program to print numbers from 10 to 100 in increments of 10.‬

‭Sample Data (Output only)‬‭:‬

‭10 20 30 40 50 60 70 80 90 100‬

‭2.‬ ‭Write a program that prompts the user to input a positive integer. It should then‬
‭print the multiplication table of that number. (0 - 12)‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter a number: 5‬
‭Multiplication Table of 5‬
‭5 x 0 = 0‬
‭5 x 1 = 5‬
‭.... ‬
‭5 x 12 = 60‬

‭More Complex Loops‬

‭●‬ ‭Nested loops‬‭: if a loop exists inside the body of‬‭another loop, it's called a nested loop.‬

‭●‬ ‭Loops with more than one condition‬‭: a condition is‬‭a boolean expression and can have more‬
‭than one part to be considered. For example, to vote you need to be 18+ AND an American‬
‭citizen. In this case, only when both requirements are true can a person be eligible to vote. It‬
‭works the same with loop conditions.‬

‭○‬ ‭when using AND (&&), both parts of the condition must be true to evaluate to true‬
‭○‬ ‭when using OR (||), only one part needs to be true to evaluate to true‬

‭●‬ ‭Sample exercises:‬

‭1.‬ ‭Write a Java program that prints out each day of the week for a month‬
‭(approximately 4 weeks).‬

‭Sample Data (Output)‬‭:‬

‭Week: 1‬
‭Day: 1‬
‭Day: 2‬
‭Day: 3‬
‭..... ‬

‭Week: 2‬
‭Day: 1‬
‭Day: 2‬
‭Day: 3‬
‭.... ‬

‭.... ‬

‭2.‬ ‭Write a Java program that prompts the user for a number of rows and then prints‬
‭out a half pyramid of asterisks (‘*’) with the same number of rows.‬

‭Sample Data (Input/Output)‬‭:‬

‭Enter the number of rows: 5‬

‭*‬
‭* *‬
‭* * *‬
‭* * * *‬
‭* * * * *‬

‭3.‬ ‭Write a Java program that prompts the user for a number less than 100 and prints‬
‭out all the even numbers starting from the number that they entered up to and‬
‭including 100.‬

‭Sample Data(Input/Output)‬‭:‬

‭Enter a number: 85‬

‭86 88 90 92 94 96 98 100‬

