
 CISC 1115 (TY8) Exam 2 Review Sheet

 NOTE : This review sheet covers most (but not all) topics for your upcoming exam. It is here to clear up
 any confusion you may have about a particular concept, however, please keep in mind that we cannot
 and will not provide you with all the answers. Programming is a hands-on skill, please take it upon
 yourself to understand these concepts AND put them to use practically. Please work on the sample
 exercises provided; the only way to get better at writing code is by actually writing code .

 Previous Topics
 ● Chapter 2: Variables and operators
 ● Chapter 3: Input and output
 ● Chapter 5: Conditionals and Logic
 ● Chapter 7: Loops

 Topics (NEW)
 ● Chapter 9: Strings and things
 ● Chapter 4: Void methods
 ● Chapter 6: Value methods

 Chapter 2: Variables and Operators

 Identifiers and Keywords

 ● Keywords are predefined, reserved words used in Java programming with special meanings to
 the compiler.

 ○ For example: int, char, double, new, return, static, etc.

 ● You cannot use keywords like int, for, class, etc. as variable names (or identifiers) as they are part
 of the Java programming language syntax.

 ● Identifiers are the names given to variables, classes, methods, etc.

 ○ For example: n, num, number, score, etc.

 Arithmetic Expressions

 ● Pre-increment (++x), i.e. System.out.println(++x); ➡➡➡ result: new value of x
 ● Post-increment (x++), i.e. System.out.println(x++); ➡➡➡ result: original value of x, store new

 value for next action
 ● (=): assignment vs (==): equivalence

 Arithmetic Precedence

 Java.lang.Math class methods

 ● Math Class methods are built-in methods that make performing numeric operations like square,
 square root, cube, cube root, exponential and trigonometric operations, etc. easier.

 ● Math class methods include (but are not limited to):

 ○ abs() : java.lang.Math.abs(datatype arg) method returns the absolute value of any type of
 argument passed. This method can handle all the data types

 ■ Parameters:
 arg: the argument whose absolute value we need

 ■ Returns:
 the absolute value of the passed argument

 ○ pow() : java.lang.Math.pow(double b, double e) method returns the value as b^e
 ■ Parameters:

 b: base
 e: exponent

 ■ Returns:
 value as base^exponent

 ○ sqrt() : java.lang.Math.sqrt(double a) method returns the correctly rounded positive
 square root of a double value

 ■ Parameters :
 a - a value

 ■ Returns:
 the positive square root of a. If the argument is NaN or less than zero,

 the result is NaN

 ○ random() : java.lang.Math.random() method returns a pseudorandom double type
 number greater than or equal to 0.0 and less than 1.0

 ■ Returns:
 a double value with a positive sign, greater than or equal to 0.0 and less

 than 1.0.

 ■ To generate a double value within a specific in range:

 Math.random() * (max - min) + min

 Where min is inclusive and max is exclusive
 (i.e. to generate a number between 1-10, set min to 1 and max to 11)

 ○ See the Java API for the full list of Math class methods:
 https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Math.html

https://docs.oracle.com/en/java/javase/22/docs/api/java.base/java/lang/Math.html

 Chapter 3: Input and Output

 Writing to the Screen (System.out)

 ● System.out represents the Standard Output Stream. That means that if we want to print any
 statement on the console, we should use the following statement:

 System.out.print();

 ● There are three methods we use to print statements:

 ○ print(String s) : used to print on the console. It accepts a string as a parameter (we can
 concatenate parts to the string if necessary, i.e. “Hello” + “ World”, etc. however, it is
 typical convention to include all string literals in the same pair of quotations if they are
 consecutive) After printing the statement, the cursor remains on the same line.

 ○ println(String s) : upgraded version of the print() method. It is also used to display text on
 the console. After printing the statement, it throws the cursor at the start of the next line. It
 is the main() difference between the println() and the print() method.

 ○ printf(String format, datatype args) : It accepts two parameters:

 ■ format: It is a formatted String, uses placeholders with specific conversion
 characters to refer to the arguments that will be replaced when printing

 ■ args: It is an argument referenced by the format specifiers. If the number of
 arguments is more than the format specifiers, the other arguments are ignored.
 The number of arguments may be zero.

 ■ Conversion characters are only valid for certain data types. Here are some
 common ones:

 ● %s formats strings (String)
 ● %d formats decimal integers (int)
 ● %f formats floating-point numbers (double)

 ■ Optional Modifiers:

 ● The [flags] define standard ways to modify the output and are most
 common for formatting integers and floating-point numbers.

 ● The [width] specifies the field width for outputting the argument. It
 represents the minimum number of characters written to the output.

 ● The [.precision] specifies the number of digits of precision when
 outputting floating-point values. Additionally, we can use it to
 define the length of a substring to extract from a String.

 ■ %[flags][width][.precision]conversion-character (i.e. %2.2f would print a double
 value with two decimal places with left padding of two spaces)

 ■ printf() throws NullPointerException if the format is null, also throws the
 IllegalFormatException if a format string contains illegal syntax, and throws an
 IllegalFormatConversionException if the placeholder and corresponding
 argument are not of the same type.

 Read Interactively from the Keyboard (System.in)

 ● All reading done in Java uses the Scanner class. Using this class, we can create an object to
 read input from the standard input channel System.in (the keyboard)

 ● To use the Scanner class, it is necessary to import the class Scanner from the library java.util by
 including the following line at the top of program:

 import java.util.Scanner;

 ● We can declare a Scanner object by saying:

 Scanner sc = new Scanner (System.in);

 ○ where:

 ■ sc is the name of the Scanner object (this can be changed and is entirely up to
 the person who writes the code)

 ■ and System.in connects our object to standard input (the keyboard)

 ● The Scanner class has multiple built-in methods that we can access to help us read data, for
 example: we can use sc.nextLine() to read in a line of String(s) (spaces included)

 ● Other methods include:

 ○ nextBoolean(): reads a boolean value from the user
 ○ nextByte(): reads a byte value from the user
 ○ nextDouble(): reads a double value from the user
 ○ nextFloat(): reads a float value from the user
 ○ nextInt(): reads a int value from the user
 ○ next(): reads a complete token (String) from the user. A complete token is

 preceded and followed by input that matches the delimiter pattern, in most
 instances this is a space

 ● Sample exercises:

 1. Write a Java program that prompts the user for their first and last name and then
 prints out a message: “Hello, [FIRST NAME, LAST NAME]!”

 Sample Data (Input/Output) :

 Enter your name: Jane Doe
 Hello, Jane Doe!

 Reading and Writing Using Files

 ● As previously mentioned, we use a Scanner to read data whether or not the data is from the
 keyboard or a file. To read from a file we only need to make one or two modifications from
 what we learned from reading from the keyboard.

 ● First, since we are using files we need to allow our program(s) to use them by including:

 import java.io.File; //import the File class

 ● Now we can add a throws Exception declaration to main and create the File object that we will
 be reading from:

 File file= new File("[filename].txt");
 ● And create a Scanner like we have previously done, only changing our reference from the

 keyboard to the corresponding file object:

 Scanner sc = new Scanner(file);

 ● It is important that you remember to create the .txt file that you are trying to reading from and
 make sure that it is in the correct directory or to specify the path where the file is located
 when creating the File object else you will receive a FileNotFoundException when you attempt
 to run your code.

 ● Writing to a file is slightly less work since we do not have to manually create the .txt file ourselves
 prior to running the program, the program will do the creation for us.

 ● Like before, we need to import the PrintWriter class in order to use it:

 import java.io.PrintWriter;

 ● We will use the PrintWriter class to create our file:

 PrintWriter pw = new PrintWriter(“[filename].txt”);

 ● It is important to make sure that the filename that you are trying to create does not already
 exist in the directory that you are trying to create it in otherwise, you will overwrite the file
 and lose your original file data

 ● Now we can use the PrintWriter object to write, the same way that we wrote to the screen only
 replacing System.out with our PrintWriter object, i.e. pw.print(), pw.println(), pw.printf()

 ● Try modifying the programs that you may have previously done so that they write to both
 the screen AND to a file

 Chapter 5: Conditionals and Logic

 If and if-else statements

 ● An if statement specifies a statement(s) to be executed only if a particular boolean expression is
 true.

 ● An if statement can be followed by an optional else statement, which executes when the boolean
 expression is false.

 ● An if statement can be followed by an else if statement to specify a new condition if the first
 condition is false. If you choose to include an else if statement it MUST COME BEFORE the else
 statement

 ● Syntax:

 ○ if(condition1) {
 //statement(s) to be executed if condition1 is true

 }
 else if(condition2) {

 //statement(s) to be executed if the condition1 is false and condition2 is
 true

 }
 else {

 //statement(s) to be executed if the condition1 is false and condition2 is
 false

 }

 ● Sample exercises:

 1. Write a Java program that prompts the user for a number and prints whether it is
 even or odd.

 Sample Data (Input/Output) :

 Enter number: 104

 104 is an even number.

 2. Write a Java program that prompts the user for three numbers and prints out the
 largest of the three.

 Sample Data (Input/Output) :

 Enter three numbers: 78 25 87

 The largest number is: 87

 Nested if-else statements

 ● Nested if statements means an if statement inside an if statement

 ● Syntax:

 ○ if (condition1) {
 //statement(s) to be executed if condition1 is true
 if (condition2) {

 //statement(s) to be executed if condition2 is true
 }

 }

 ● Sample exercises:

 1. Write a Java program that prompts the user for a year and prints whether that year
 is a leap year or not. (Note: Leap Years are any year that can be evenly divided by
 4. A year that is evenly divisible by 100 is a leap year only if it is also evenly
 divisible by 400. For example, the years 1700, 1800, and 1900 are not leap years,
 but the years 1600 and 2000 are.)

 Sample Data (Input/Output) :

 Enter year: 2016

 2016 is a leap year.

 Logical and Relational Operators

 ● Boolean expressions (evaluates to true/false):
 ○ Less than: a < b
 ○ Less than or equal to: a <= b
 ○ Greater than: a > b
 ○ Greater than or equal to: a >= b
 ○ Equal to: a == b
 ○ Not Equal to: a != b

 Integer and Logical Values

 ● We can include integers in our boolean expressions and determine whether or not they are true
 or false. For instance, if we were to print out:

 ○ System.out.print(6 > 5) we would see a result value of ‘true’
 ○ while System.out.print(6 < 5) or System.out.print(6 == 5) would result in a value of ‘false’

 for obvious reasons

 Chapter 7: Loops

 While Loops

 ● allows code to be executed repeatedly based on a given Boolean condition (T/F). Needs two
 parts: condition/test expression and increment/decrement/update expression

 ● Syntax:

 ○ int i = 1;
 while(i <= 10) {

 //statement(s) to be executed while the condition is true
 i++;

 }

 ○ where:

 ■ i <= 10 is a boolean expression. I f the condition evaluates to true, we will
 execute the body of the loop and go to the update expression. Otherwise,
 we will exit from the while loop without reaching the statements inside the body.

 ■ and i++ increments the variable i

 ● How many times does this loop run? What would happen if you forgot to include i++;? Try writing
 code that uses a while loop like this.

 ● Sample exercises:

 1. Write a Java program that prompts the user for age and prints out “Sorry, you are
 ineligible to vote.” and increments the age until the user is eligible to vote, and
 prints out “Congratulations, you are eligible to vote!” once they are 18+.

 Sample Data (Input/Output) :

 Enter your age: 16
 .

 Sorry, you are ineligible to vote.
 Sorry, you are ineligible to vote.
 Congratulations, you are eligible to vote!

 2. Write a Java program that prompts the user to input an integer and then outputs
 the number with the digits reversed. For example, if the input is 12345, the output
 should be 54321.

 Sample Data (Input/Output) :

 Enter a number: 12345
 Reverse of 12345 is: 54321

 For Loops

 ● Unlike a while loop, a for statement has the initialization, condition, and increment/decrement
 in one line

 ● Syntax:

 ○ for (int i = 1; i <= 10; i++) {
 //statement(s) to be executed while the condition is true

 }

 ○ where:
 ■ int i = 1; is the initialization
 ■ i <= 10; is a boolean condition
 ■ and i++ increments the variable i

 ● How many times does this loop run? Try writing code that uses a for loop like this.

 ● Sample exercises:

 1. Write a program to print numbers from 10 to 100 in increments of 10.

 Sample Data (Output only) :

 10 20 30 40 50 60 70 80 90 100

 2. Write a program that prompts the user to input a positive integer. It should then
 print the multiplication table of that number. (0 - 12)

 Sample Data (Input/Output) :

 Enter a number: 5
 Multiplication Table of 5
 5 x 0 = 0
 5 x 1 = 5

 5 x 12 = 60

 More Complex Loops

 ● Nested loops : if a loop exists inside the body of another loop, it's called a nested loop.

 ● Loops with more than one condition : a condition is a boolean expression and can have more
 than one part to be considered. For example, to vote you need to be 18+ AND an American
 citizen. In this case, only when both requirements are true can a person be eligible to vote. It
 works the same with loop conditions.

 ○ when using AND (&&), both parts of the condition must be true to evaluate to true
 ○ when using OR (||), only one part needs to be true to evaluate to true

 ● Sample exercises:

 1. Write a Java program that prints out each day of the week for a month
 (approximately 4 weeks).

 Sample Data (Output) :

 Week: 1
 Day: 1
 Day: 2
 Day: 3

 Week: 2
 Day: 1
 Day: 2
 Day: 3

 2. Write a Java program that prompts the user for a number of rows and then prints
 out a half pyramid of asterisks (‘*’) with the same number of rows.

 Sample Data (Input/Output) :

 Enter the number of rows: 5

 *
 * *
 * * *
 * * * *
 * * * * *

 3. Write a Java program that prompts the user for a number less than 100 and prints
 out all the even numbers starting from the number that they entered up to and
 including 100.

 Sample Data(Input/Output) :

 Enter a number: 85

 86 88 90 92 94 96 98 100

 Chapter 9: Strings and Things

 String Representation

 ● Strings are used for storing text.
 ● A String variable contains a collection of characters surrounded by double quotes, it can be

 declared using a string literal, such as:

 String greeting = “Hello”;

 ● Like arrays, Strings are immutable as well. Whenever a change to a String is made, an entirely
 new String is created.

 ● Methods used to obtain information about a String are known as accessor methods . One
 accessor method that you can use with Strings is the length() method, which returns the number
 of characters contained in the String.

 System.out.println(“The length of String greeting is: “ + greeting.length());

 What should this print out? How long is our String greeting?

 ● Sample exercises:

 1. Write a Java program that prompts the user for their first and last name, prints out
 the length of both and then greets them with a message.

 Sample Data (Input/Output) :

 Enter first name: John
 Enter last name: Doe

 The length of first name: John is 4
 The length of last name: Doe is 3

 Hello, John Doe!

 String Methods

 ● As previously mentioned, when we create a String, we have access to methods that can perform
 certain operations on Strings. These methods include (but are not limited to):

 ○ char charAt(int index)
 ■ Parameters:

 index - the index of the char value
 ■ Returns:

 the char value at the specified index of this string. The first char value is
 at index 0

 ■ Throws:
 IndexOutOfBoundsException - if the index argument is negative or not
 less than the length of this string

 ■ Example: what does greeting.charAt(2) return?
 *note:remember that Strings are char arrays and array indexes start from 0

 ○ int compareTo(String anotherString)
 ■ Parameters:

 anotherString - the String to be compared
 ■ Returns:

 the value 0 if the argument string is equal to this string;
 a value less than 0 if this string is lexicographically less than the string
 argument;
 and a value greater than 0 if this string is lexicographically greater than
 the string argument

 ○ int compareToIgnoreCase(String str)
 ■ Parameters:

 str - the String to be compared
 ■ Returns:

 a negative integer, zero, or a positive integer as the specified String is
 greater than, equal to, or less than this String, ignoring case
 considerations

 ○ String concat(String str)
 ■ Parameters:

 str - the String that is concatenated to the end of this String
 ■ Returns:

 a string that represents the concatenation of this object's characters
 followed by the string argument's characters

 *note: we can also use the + operator between strings to concatenate them.
 ○ boolean equals(Object anObject)

 ■ Parameters:
 anObject - The object to compare this String against

 ■ Returns:
 true if the given object represents a String equivalent to this string, false
 otherwise

 ○ boolean equalsIgnoreCase(String anotherString)
 ■ Parameters:

 anotherString - The String to compare this String against
 ■ Returns:

 true if the argument is not null and it represents an equivalent String
 ignoring case; false otherwise

 ○ int indexOf(int ch)
 ■ Parameters:

 ch - a character (Unicode code point)
 ■ Returns:

 the index of the first occurrence of the character in the character
 sequence represented by this object, or -1 if the character does not occur

 ○ int indexOf(int ch, int fromIndex)
 ■ Parameters:

 ch - a character (Unicode code point)
 fromIndex - the index to start the search from

 ■ Returns:

 the index of the first occurrence of the character in the character
 sequence represented by this object that is greater than or equal to
 fromIndex, or -1 if the character does not occur

 ○ String substring(int beginIndex)
 ■ Parameters:

 beginIndex - the beginning index, inclusive
 ■ Returns:

 the specified substring
 ■ Throws:

 IndexOutOfBoundsException - if beginIndex is negative or larger than
 the length of this String object

 ○ String substring(int beginIndex, int endIndex)
 ■ Parameters:

 beginIndex - the beginning index, inclusive
 endIndex - the ending index, exclusive

 ■ Returns:
 the specified substring

 ■ Throws:
 IndexOutOfBoundsException - if the beginIndex is negative, or endIndex
 is larger than the length of this String object, or beginIndex is larger than
 endIndex

 ○ See the Java API for full list of String class methods:
 https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/String.html

 Integer and Character Variables

 ● A char is a single character, that is a letter, a digit, a punctuation mark, a tab, a space or
 something similar. A char literal is a single one character enclosed in single quote marks like this:

 char c = 'a';

 ● A variable whose type is char is stored as a Unicode character in 16 bits or two bytes.

 ● We can perform computations and compare equivalence between char and int variables due to
 the char ASCII values. Consult the table:

 ● The ASCII chart shown lists all of the printable characters.

https://docs.oracle.com/en/java/javase/12/docs/api/java.base/java/lang/String.html

 ● There are additional characters (whitespace, movement, computer codes) that are represented
 by codes 0-31.

 ● Note that there are different codes for “A” (decimal 65) and “a” (decimal 97).

 ● The computer has no idea what an “A” or an “a” is, or that they represent the same letter.

 ● This is important to remember – a computer only understands electronic signals, and has no
 knowledge of our alphabet.

 ● Some characters are hard to type. For these Java provides escape sequences. This is a
 backslash followed by an alphanumeric code. For instance '\n' is the newline character. '\t' is the
 tab character. '\\' is the backslash itself.

 ● The following escape sequences are defined:

 ● \b - backspace
 ● \t - tab
 ● \n - new line
 ● \r - carriage return
 ● \" - double quote, "
 ● \' - single quote, '
 ● \\ - backslash, \

 ● Sample exercises:

 1. Write a Java program that prompts the user to enter a String, counts the number of
 vowels (a, e, i, o, u) in the String and prints out the result.

 Sample Data (Input/Output) :

 Enter a String: good morning starshine, the earth says hello!

 The number of vowels in this String is: 13

 2. Write a Java program to check whether the first two characters present at the end
 of a given string.

 Sample Data (Output only) :

 The given strings is: educated
 The first two characters appear in the last is: true

 Chapter 4/6: Methods (Call By Value)

 A method in Java is a block of code that, when called, performs specific actions mentioned in it.

 For instance, if you have written instructions to draw a circle in the method, it will do that task. You can
 insert values or parameters into methods, and they will only be executed when called. They are also
 referred to as functions.

 The primary uses of methods in Java are:

 ● It allows code reusability (define once and use multiple times)
 ● It breaks a complex program into smaller chunks of code
 ● It increases code readability

 Call by Value means calling a method with a parameter as value. Through this, the argument value is
 passed to the parameter.

 In call by value, the modification done to the parameter passed does not reflect in the caller's scope
 (originally where the method was called), unless returned.

 Void Methods

 ● Void methods mean that the method does not return a value (e.g. main())

 Value Methods

 ● Value methods have a return type (int, double, String, boolean, etc.) and must return a value of
 that type

 ● Sample exercises:

 1. Trace the following program :

 public static void main(String[] args){
 int a = 30;
 int b = 45;
 System.out.println("Before swap (in main), a = " + a + " and b = " + b);
 // Invoke the swap method
 swap(a, b);
 System.out.println("After swap (in main), a = " + a + " and b is " + b);
 //Invoke the modify method
 b = modify(a, b);
 System.out.println("After modify (in main), a = " + a + " and b is " + b);

 }

 public static void swap(int a, int b) {
 System.out.println("Before swap (in method), a = " + a + " b = " + b);
 // Swap n1 with n2
 int c = a;

 a = b;
 b = c;
 System.out.println("After swap (in method), a = " + a + " b = " + b);

 }

 public static int modify(int a, int b) {
 System.out.println("Before modify (in method), a = " + a + " b = " + b);
 // modify values
 a = b * 2;
 b = a * 3;
 System.out.println("After modify (in method), a = " + a + " b = " + b);
 return a;

 }

