
Play as Research: The Iterative Design Process
Eric Zimmerman
Final Draft: July 8, 2003

Needs and Pleasures

Design is a way to ask questions. Design research, when it occurs through the practice of
design itself, is a way to ask larger questions beyond the limited scope of a particular
design problem. When design research is integrated into the design process, new and
unexpected questions emerge directly from the act of design. This chapter outlines one
such research design methodology -- the iterative design process -- using three recent
game projects with which I have been involved (SiSSYFiGHT 2000, LOOP, and LEGO
Junkbot).

The creation of games is particularly well-suited to provide a model of research through
design. In this book’s introduction, Brenda Laurel makes a distinction between the notion
of designing “for needs” and designing “for delight.” {see Laurel, Introduction}While all
forms of design partake of both of these categories in some measure, game design is
particularly skewed toward the creation of delightful experience, rather then the
fulfillment of utilitarian needs. Although it is true that we can create and play games for a
particular function (for exercise, to meet people, to learn about a topic), by and large,
games are played for the intrinsic pleasures they provide.

As a form of designed “delight,” the process of interacting with a game is not a means to
an outside end, but an end in and of itself. It is this curious quality of games that makes
them wonderful case studies for design research through the process of design. As a game
evolves (through the iterative process outlined below), it defines and redefines its own
form and the experiences it can provide for players. Through the iterative play of design
itself, entirely new questions can come into being.

Iteration Iteration

Iterative design is a design methodology based on a cyclic process of prototyping, testing,
analyzing, and refining a work in progress. In iterative design, interaction with the
designed system is used as a form of research for informing and evolving a project, as
successive versions, or iterations of a design are implemented.

 {zimmerman.chapter.01}

Test; analyze; refine. And repeat. Because the experience of a viewer/user/player/etc
cannot ever be completely predicted, in an iterative process design decisions are based on
the experience of the prototype in progress. The prototype is tested, revisions are made,
and the project is tested once more. In this way, the project develops through an ongoing
dialogue between the designers, the design, and the testing audience.

In the case of games, iterative design means playtesting. Throughout the entire process of
design and development, your game is played. You play it. The rest of the development
team plays it. Other people in the office play it. People visiting your office play it. You
organize groups of testers that match your target audience. You have as many people as
possible play the game. In each case, you observe them, ask them questions, then adjust
your design and playtest again.

This iterative process of design is radically different than typical retail game
development. More often than not, at the start of the design process for a computer or
console title, a game designer will think up a finished concept and then write an
exhaustive design document that outlines every possible aspect of the game in minute
detail. Invariably, the final game never resembles the carefully conceived original. A
more iterative design process, on the other hand, will not only streamline development
resources, but will also result in a more robust and successful final product.

Case Study 1: SiSSYFiGHT 2000

Summary: SiSSYFiGHT 2000 is a multiplayer online game in which players
create a schoolgirl avatar and then vie with 3-6 players for dominance of the
playground. Each turn a player selects one of six actions to take, ranging from
teasing and tattling to cowering and licking a lolly. The outcome of an action is
dependent on other players’ decisions, making for highly social gameplay.
SiSSYFiGHT 2000 is also a robust online community. You can play the game at
www.sissyfight.com.

In the summer of 1999, I was hired by Word.com to help them create their first game. We
initially worked to identify the project’s play values: the abstract principles that the game
design would embody. The list of play values we created included designing for a broad
audience of non-gamers; a low technology barrier; a game that was easy to learn and play
but deep and complex; gameplay that was intrinsically social; and finally, something that
was in line with the smart and ironic Word.com sensibility.

These play values were the parameters for a series of brainstorming sessions, interspersed
with group play of computer and non-computer games. Eventually, a game concept
emerged: little girls in social conflict on a playground. While every game embodies some
kind of conflict, we were drawn towards modeling a conflict that we hadn’t seen depicted

previously in a game. Technology and production limitations meant that the game would
be turn-based, although it could involve real-time chat.

Once these basic formal and conceptual questions had begun to be mapped out, the shape
of the initial prototype became clear. The very first version of SiSSYFiGHT was played
with post-it-notes around a conference table. I designed a handful of basic actions each
player could take, and acting as the program, I “processed” the actions each turn and
reported the results back to the players, keeping score on a piece of paper.

Designing a first prototype requires strategic thinking about how to most quickly
implement a playable version that can begin to address the project’s chief uncertainties in
a meaningful way. Can you create a paper version of your digital game? Can you design
a short version of a game that will last much longer in its final form? Can you test the
interaction pattern of a massively multiplayer game with just a handful of players?

In the iterative design process, the most detailed thinking you need at any moment is that
which will get you to your next prototype. It is, of course, important to understand the big
picture as well: the larger conceptual, technical, and design questions that drive the
project as a whole. Just be sure not to let your design get ahead of your iterative research.
Keep your eye on the prize, but leave room for play in your design, for the potential to
change as you learn from your playtesting, accepting the fact that some of your
assumptions will undoubtedly be wrong.

The project team continued to develop the paper prototype, seeking the balance between
cooperation and competition that would become the heart of the final gameplay. We
refined the base ruleset -- the actions a player can take each turn and the outcomes that
result. These rules were turned into a spec for the first digital prototype: a text-only
version on IRC, which we played hotseat-style, taking turns sitting at the same computer.
Constructing that early, text-only prototype allowed us to focus on the complexities of the
game logic without worrying about implementing interactivity, visual and audio
aesthetics, and other aspects of the game.

While we tested gameplay via the text-only iteration, programming for the final version
began in Director, and the core game logic we had developed for the IRC prototype was
recycled into the Director code with little alteration. Parallel to the game design, the
project’s visual designers had begun to develop the graphic language of the game and
chart out possible screen layouts. These early drafts of the visuals (revised many times
over the course of the entire development) were dropped into the Director version of the
game, and the first rough-hewn iteration of SiSSYFiGHT as a multiplayer online game
took shape, inspired by Henry Darger’s outsider art and retro game graphics.

 {zimmerman.chapter.02}

As soon as the web version was playable, the development team played it. And as our
ugly duckling grew more refined, the rest of the Word.com staff were roped into testing
as well. As the game grew more stable, we descended on our friends’ dot-com companies
after the workday had ended, sitting them down cold in front of the game and letting
them play. All of this testing and feedback helped us refine the game logic, visual
aesthetics, and interface. The biggest challenge turned out to be clearly articulating the
relationship between player action and game outcome: because the results of every turn
are interdependent on each player’s actions, early versions of the game felt frustratingly
arbitrary. Only through many design revisions and dialogue with our testers did we
manage to structure the results of each turn to unambiguously communicate what had
happened that round and why.

When the server infrastructure was completed, we launched the game to an invite-only
beta-tester community that slowly grew in the weeks leading up to public release. Certain
time slots were scheduled as official testing events, but our beta users could come online
anytime and play. We made it very easy for the beta testers to contact us and email in bug
reports.

Even with this small sample of a few dozen participants, larger play patterns emerged.
For example, as with many multiplayer games, it was highly advantageous to play
defensively, leading to standstill matches. In response, we tweaked the game logic to
discourage this play style: any player that “cowered” twice in a row was penalized for
acting like a chicken! When the game did launch, our loyal beta testers became the core
of the game community, easing new players into the game’s social space.

 {zimmerman.chapter.03}

 {zimmerman.chapter.04}

 {zimmerman.chapter.05}

In the case of SiSSYFiGHT 2000, the testing and prototyping cycle of iterative design
was successful because at each stage, we clarified exactly what we wanted to test and
how. We used written and online questionnaires. We debriefed after each testing session.
And we strategized about how each version of the game would incorporate the visual,
audio, game design, and technical elements of the previous versions, while also laying a
foundation for the final form of the experience.

Case Study 2: LOOP

Summary: LOOP is a singleplayer game in which the player uses the mouse to
catch flittering, colored butterflies. The player draws loops around groups of

butterflies of the same color, or of groups in which each butterfly is a different
color (the more butterflies in a loop, the more points). To finish a level, the player
must capture a certain number of butterflies before the sun sets. The game
includes three species of butterflies and a variety of hazardous bugs, all with
different behaviors. LOOP was created by gameLab and is available for play at
Shockwave.com.

Initial prototypes are usually quite ugly. Game prototypes do not emphasize aesthetics or
narrative content: they emphasize the game rules, which manifest as the internal logic of
the game, tied to the player’s interaction. Visuals, audio, and story are important aspects
of a game, but the core uncertainties of game design, the questions that a prototype
should address, lie in the more fundamental elements of rules and play.

Another way of framing this problem is to ask, What is the activity of the game? Rather
than asking what the game is about, ask what the player is actually doing from moment
to moment as they play. Virtually all games have a core mechanic, an action or set of
actions that players will repeat over and over as they move through the designed system
of a game. The prototype should help you understand what this core mechanic is and how
the activity becomes meaningful over time. Asking questions about your game’s core
mechanic can guide the creation of your first prototype, as well as successive iterations.
Ideally, initial prototypes model this core mechanic and begin to test it through play.

LOOP grew out of a desire at gameLab to invent a new core mechanic. There are
ultimately not very many ways to interact with a computer game: the player can express
herself through the mouse and keyboard, and the game can express itself through the
screen and speakers. Deciding to intervene on the level of player input, we had a notion
to cast aside point-and-click or click-and-drag mouse interaction in favor of sweeping,
fluid gestures.

The first prototype tested only this core interaction, allowing the player to draw lines, but
nothing else. Our next step was to have the program detect a closed loop and add objects
that would shrink and disappear when caught in a loop.

 {zimmerman.chapter.06}

 {zimmerman.chapter.07}

 {zimmerman.chapter.08}

Each of these prototypes had parameters adjustable by the person playing the game. The
length of line and detail on the curve could be tweaked, as well as the number of objects,
their speed and behavior, and several other variables. As we played the game, we could
try out different parameters and immediately see how they affected the experience,
adjusting the rules to arrive at a different sort of play. This programming approach,
building accessible game design tools into a game prototype, is a technical strategy that
incorporates and facilitates iterative design. A sample of the game editor code follows:

-- LOOP SCORES
score_same=0,5,10,20,40,80,150,250,350,500,700,1000,1400,1900,250
0,3100,380
0,4600,5500,7000
score_different=0,0,30,75,200,500
score_badloop=-20

-- # of caught butterflies for each level of loop sound effect
loop_sound_num=1,4,6,8,10

-- BONUSES
-- butterfly-borne bonus (x2):
bonus_lifetime=60
-- leaf-blown bonus (longer, moretime, freeze, flock):
freebonus_speedlimit=15
bonus_freeze_duration=4
bonus_flock_duration=12

-- HAZARDS
snail_speedlimit=1.2
killerbee_speedlimit=12,
killerbee_attackrate=3,killerbee_stingduration=6
beetle_speedlimit=3, beetle_fighttime=4, beetle_aborttime=10,
beetle_effectradius=300
stinkbug_speedlimit=2, stinkbug_tag_radius=40,
stinkbug_effect_duration=10, stinkbug_effect_radius=300
spider_speedlimit=9,
spider_climblimit=22,spider_stingduration=6,spider_loop_length=5

As the butterfly content of the game emerged, so did debate about the game’s overall
structure and victory and loss conditions. Did the entire screen need to be cleared of
butterflies or did the player just have to catch a certain number of them? Did the
butterflies gradually fill up the screen or did their number remain constant? Was there
some kind of time-pressure element? Were there discreet levels or did the game just go
on until the loss conditions were met? These fundamental questions, which grew out of
our core mechanic prototyping, were only answered by actually trying out possibilities
and coming to conclusions through play.

As the game code solidified, the many adjustable parameters of the game were placed in
a text file that was read into the application when it ran. These parameters controlled
everything from the behavior of game creatures to points scored for different numbers of
butterflies in a loop to the progression of the game’s escalating difficulty. Thus the game
designers could focus on refining game variables and designing levels, while the rest of
the program -- screen transitions and help functionality, the high score system and
integration with the host site -- was under construction.

 {zimmerman.chapter.09}

{zimmerman.chapter.10}

{zimmerman.chapter.11}

LOOP followed a testing pattern similar to that of SiSSYFiGHT, moving outward from
the game creators to include a larger circle of players. During the development of LOOP,
gameLab created the gameLab Rats, our official playtesting “club,” to facilitate the
process of testing and feedback. In the end, LOOP managed to achieve the fluid
interaction we had first envisioned, an entire game evolving from a simple idea about
mouse control. That is the power of iterative design.

Case Study 3: LEGO Junkbot

Summary: LEGO Junkbot is a singleplayer game in which the player helps the
robot character Junkbot empty trash cans throughout a factory. The player
doesn’t control Junkbot directly but instead uses the mouse to move LEGO bricks
around the screen, deconstructing and reconstructing his environment brick by
brick, building stairways and bridges that help Junkbot get where he needs to go.
A variety of helpful and hazardous objects and robots add variety and
complication to the game’s 60 levels. Junkbot levels can be solved in multiple
ways and the game structure encourages players to go back to previously solved
levels and complete them using a different method.

The conceptual starting point for the creation of LEGO Junkbot came from gameLab’s
client, LEGO.com. LEGO wanted a game about brick construction with a target audience
of 8-12 year-old boys that that could also be played and enjoyed by adults. The challenge
of the design problem was that real-world LEGO play was the referent. Yet in no way
could we ever hope to recreate the sublime interactivity of plastic LEGO bricks. How
could we translate LEGO play into a digital game?

Our first step was to purchase and play with a whole mess of LEGO bricks, as a way of
analyzing and understanding their subtleties. Then, as with most gameLab projects, we
began to design by identifying the project’s play values. These values, which embodied
the material and experiential qualities of LEGO as well as the cultural ethos of the LEGO
play philosophy, included concepts like modularity, open-ended construction, design
creativity, multiple-solution problem-solving, imaginative play, and engineering. Using
these play values as our limiting parameters, we brainstormed a number of game
concepts.

The concept LEGO selected was called LEGOman (the character and storyline of
Junkbot had not yet emerged) and it centered around moving bricks to indirectly help a
character move through an environment. The first playable prototype was the simplest
possible iteration of the core interactive idea: the player could use the mouse to drag
bricks on the screen; there was a single, autonomously-moving protagonist character;
there were goal flags to touch; and there were rolling wheel hazards to avoid.

 {zimmerman.chapter.12}

 {zimmerman.chapter.13}

We played that first prototype. And it was not very fun. Because gameLab projects often
try to invent new forms of gameplay, we sometimes find that our initial prototypes are
just not that enjoyable to play. At such an early juncture in the iterative design process,
we could have scrapped the design altogether and started fresh, building on insights
learned from the unsuccessful prototype, or we could dig in and push on through. We
chose the latter. Gradually we added elements to the game, refining the interaction,
expanding the level possibilities, putting in new kinds of special bricks and robot hazards.

Each new element addressed something that was lacking in the experience of the
previous prototype: it was monotonous to move bricks one by one, so we implemented
code that let players stack bricks and move them as a group. We needed a way to move
the main character vertically on the screen, so we added fan bricks, which float Junkbot
upwards. The game obstacles all felt too deterministic, so we introduced robot hazards
that responded to Junkbot in real time. And as these interactive embellishments deepened
the game (which was actually becoming fun to play), the character and storyline of
Junkbot emerged.

Throughout the process, we utilized a level editor, a visual design tool that let the game
designers create and save levels. The editor allowed them to experiment with game
elements and level designs, refining the overall experience and planning features for the
next iteration of the prototype.

 {zimmerman.chapter.14}

Playtesting continued with the gameLab Rats, using a web-based form to collect and
collate testing data about the difficulty and enjoyment of each level. However, our main
concern was whether the basic brick-construction core mechanic would be understood by
our target audience, so we visited an elementary school computer classroom, sat kids
down in front of the game, and let them play cold. This testing was invaluable, and
confirmed our fears: too many of the testers had trouble picking up basic game concepts,
such as how to make a stairway for Junkbot out of bricks. This testing directly influenced
the design of the game, and we slowed down the overall learning curve, designing the
first several game levels to more clearly communicate the essential interactive ideas.

 {zimmerman.chapter.15}

{zimmerman.chapter.16}

 {zimmerman.chapter.17}

A good rule of thumb for iterative testing is to err on the side of observation rather than
guidance. While it may be difficult to keep your hands off the tester’s mouse, instead sit
back and see what your audience actually does, rather than telling them how it is
supposed to work. What you observe can sometimes be painful to watch, but it will help
you design more successful play. Part of iterative design is simply learning how to listen.

Conclusions

Iterative design is a process-based design methodology, but it is also a form of design
research. In each of these three case studies, new questions emerged out of the very
process of design, questions that were not part of the initial investigation but were
nevertheless addressed through iterative play and design.

To design a game is to construct a set of rules. But the point of game design is not to have
players experience rules -- it is to have players experience play. Game design is therefore
a second-order design problem, in which designers craft play, but only indirectly, through
the systems of rules that game designers create. Play arises out of the rules as they are
inhabited and enacted by players, creating emergent patterns of behavior, sensation,
social exchange, and meaning. Thus the necessity of the iterative design process. The

delicate interaction of rule and play is something too subtle and too complex to script out
in advance, requiring the improvisational balancing that only testing and prototyping can
provide.

The principles of the iterative process are clearly applicable beyond the limited domain of
games. Rules and play are just game design terms for structure and experience: a
designer creates some kind of structure (a typeface, a building, a car), and a reader,
visitor, or car passenger experiences it: encountering, exploring, dwelling in, and
manipulating the system -- using it, playing with it, delighting in it. Games provide
particularly clear examples of iterative design, but any design field can benefit from such
an approach.

In iterative design, there is a blending of designer and user, of creator and player. It is a
process of design through the reinvention of play. Through iterative design, designers
create systems and play with them. They become participants, but do so in order to
critique their creations, to bend them, break them, and re-fashion them into something
new. And in these procedures of investigation and experimentation, a special form of
research takes place. The process of iteration, of design through play, is a way of
discovering the answers to questions you didn’t even know were there. And that makes it
a powerful and important form of design research.

Project Teams

SiSSYFiGHT 2000
Word.com, 2000
Marisa Bowe, Ranjit Bhatnagar, Tomas Clarke, Michelle Golden, Lucas Gonze, Lem Jay
Ignacio, Jason Mohr, Daron Murphy, Yoshi Sodeka, Wade Tinney, Eric Zimmerman

LOOP
gameLab, 2001, published by Shockwave.com
Ranjit Bhatnagar, Peter Lee, Frank Lantz, Eric Zimmerman, & Michael Sweet /
Audiobrain

LEGO Junkbot
gameLab, 2001, published by LEGO.com
Ranjit Bhatnagar, Nick Fortugno, Peter Lee, Frank Lantz, Eric Zimmerman, & Michael
Sweet / Audiobrain

